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Abstract –  

Efficient progress monitoring and reporting 

require detailed and accurate reports from 

construction sites in a timely manner. These reports 

include important information to assist decision-

making through comparison of as-built information 

to as-planned state. Manual reporting is time-

consuming, error-prone, costly and is highly 

dependent on site personnel expertise. Advances 

recently made in artificial intelligence, data 

processing and digital cameras have paved the way 

for introduction of image-based methods for 

automated monitoring and progress reporting in the 

construction industry. Object recognition has 

achieved significant advances and considerable 

growth by the introduction of deep learning 

algorithms such as the Convolutional Neural 

Networks (CNN). This research proposes a method 

for automated recognition and segmentation of 

HVAC ducts utilizing digital images by developing 

Mask Region-based Convolutional Neural Network 

(Mask R-CNN) architectures. 3D BIM models are 

utilized for generating 1,143 synthetic images to train 

the developed Mask R-CNN model. To enhance the 

training dataset capability and overcome the  

overfitting problems, various data augmentation 

techniques are considered. The developed deep 

learning-based object recognition method automates 

monitoring of HVAC ducts installation, making use of 

generated synthetic images for training the algorithm 

to overcome the need for large datasets of actual 

images. 
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1 Introduction 

Constant progress monitoring of different activities at 

jobsites influences the project budget and schedule for 

reducing cost and delays. It also improves the quality 

control, documentation, and communication in 

construction projects [1]. In conventional progress 

monitoring schemes, the current state of the project is 

compared with the as-planned state to assist in evaluating 

the project’s performance. It includes tracking, reviewing, 

and organizing the activities for determining the areas 

where timely corrective actions are required [2, 3].  

However, due to different site activities, monitoring 

the construction progress is a complicated and 

challenging task that requires correct information in a 

timely manner to support project managers in identifying 

scheduling deviations in an early phase to avoid possible 

delays. Accurate and in-time construction site data 

collection, efficient data analysis, and visualization 

applications in an interpretable format are essential 

requirements for efficient progress monitoring [2, 3]. 

Currently, many construction sites are equipped with 

economical digital cameras that produce a large number 

of images and videos containing considerable amount of 

information from the job sites. These images/videos can 

ultimately benefit the project management system. 

However, due to various difficulties in data analysis and 

processing, practical use of this abundant of data is quite 

challenging. Hence, project managers would apply 

manual and costly methods for construction activity 

analysis [4].  

Through improvements in deep learning algorithms 

and advances in device capabilities (processing power, 

memory storage and high image sensor resolution), 

computer vision methodologies have gained widespread 

interest in various construction research areas [5].  

Consequently, by increasing efficiencies in extracting 
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information from the captured images and videos, 

computer vision methods that use deep learning 

algorithms have been applied for automating 

construction monitoring purposes such as in progress 

tracking, productivity analysis, safety assurance, and 

quality control [6, 7].  

In particular, there is an increasing shift towards 

utilizing deep-learning based object recognition 

algorithms for automated identification of construction 

elements from digital images to assist project reporting 

and updating schedule by accessing to as-built 

information [4, 7–9].  

However, despite  advances in different object 

recognition algorithms, the open dataset of images from 

construction job sites, including different building 

elements, is not available to train and validate the 

algorithms [4]. This research has developed a method to 

automatically recognize HVAC ducts using Mask R-

CNN architecture and evaluate the model by utilizing 

quantitative performance metrics.  

Towards this end, 3D BIM models were utilized to 

generate and extract synthetic images to train the CNN 

algorithm. Moreover, image augmentation techniques 

such as geometric transformations and kernel filters were 

applied to artificially increase the training dataset size for 

a stable network training and prevent overfitting. Two 

experiments were conducted to evaluate data 

augmentation impact in the ultimate HVAC ducts 

recognition performance.  

2 Related Work 

Computer vision methodologies can facilitate the 

construction monitoring systems through detecting and 

tracking material, equipment, and labor in construction 

job sites [1, 4, 7, 10–14]. In computer vision, the 

detection and classification of objects in images/videos 

can be categorized into traditional (feature-based) 

algorithms and deep learning algorithms [7, 15].  

In traditional algorithms, human-engineered features 

such as edges, corners, and colors are extracted to 

determine the correct class of objects [12, 15]. This is 

achieved by utilizing  examples of feature descriptors 

such as Haar-like, the histogram of oriented gradients 

(HOG), Speeded-Up Robust Features (SURF), color 

histograms, among others. These feature descriptors 

mostly are combined with machine learning algorithms 

that have shallow structures such as the K-Nearest 

Neighbors and the Support Vector Machine for 

conducting the classification tasks [7, 15, 16]. 

A number of research studies have utilized feature 

descriptors and machine learning algorithms to detect 

construction resources from digital images [1, 17–19].  

Deep Learning (DL) algorithms such as the 

Convolutional Neural Networks (CNN), have shown 

promising performance in object detection areas and are 

widely applied in the construction industry. These 

methodologies provide more practical solutions through 

self-learning capability and higher accuracy when 

compared to the traditional algorithms [12]. Different 

studies have used deep learning algorithms to detect 

objects of interest in construction sites. The reference [4] 

has detected the structural components such as beams and 

columns by utilizing Deeply Supervised Object Detector 

(DSOD), [9] has applied Mask R-CNN, a deep 

convolutional neural network to detect Walls, Doors, and 

Lifts from images for creating an as-built model.  

Finally, the refence [10] has developed a framework 

including Convolutional Neural Networks for detecting 

the existing building objects in the jobsite, and then the 

extracted objects were superimposed on the as-planned 

model through BIM and Virtual Reality to evaluate the 

progress state.  Despite the significant performance of 

deep learning algorithms to detect construction 

components with high accuracy, there is still currently  

lack of large, labeled image datasets from job sites 

including different classes in the construction industry 

[20]. Hence, the application of synthetic images for 

training deep learning algorithms for performing object 

detection purposes has received a significant amount of 

interest to overcome the above issues [21, 22].  

3 Developed Method 

Figure 1 provides an overview of the developed 

method. It consists of three main modules, namely: 

“Synthetic Image Generation and Data Labeling”, “Mask 

R-CNN Training”, “Testing and Evaluation”.  Each of 

these modules and components is described in the 

following sections. 

3.1 Synthetic Image Generation and Data 

Labeling 

Similar to the recent research conducted in [23], 3D 

BIM models are utilized to extract synthetic images for 

overcoming absence of construction elements real image 

datasets for training the deep learning algorithm. In our 

work, the BIM models are taken from an online open-

source website [24]. The HVAC ducts and other building 

elements properties such as shape, material and size are 

defined in Autodesk Revit 2019 as a BIM software.  

Different viewpoints that consider various occlusions and 

illuminations are selected and rendered using Enscape 

v2.8, which is a real-time rendering Plugin installed in 

the Revit software. A total of 1,143 synthetic images are 

generated and used for network training. The dataset 

consists of one class, namely HVAC duct which is a 

common and widely used element in building 

construction. It has 1,887 duct instances captured in 
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1,143 images. The training set distribution shows that 

from 1,143 images, 56% of images contain only one 

HVAC duct in each image, 32% have two ducts, 9% three 

ducts, 2% four ducts, and 1% five ducts. 172 images are 

randomly selected for testing and validation purposes. 

The test set data follows nearly the same distribution of 

the training; 54% of images having one HVAC duct, 44% 

having two ducts, and 2% having three ducts. The images 

are manually annotated using the VGG Image Annotator 

(VIA) web tool to specify the HVAC ducts regions and 

locations in images through polygon shapes. In each 

image, all the pixels that have not been assigned to 

HVAC duct class are categorized as background. 

The annotation files are downloaded as JSON format 

containing polygons’ coordinates of all the images for 

further model training. 

 

 
 

Figure 1. Overview of the proposed method 

3.2 Instance Segmentation using Mask R-

CNN 

For our research we have employed the Mask R-CNN, 

an instance segmentation technique which is an extension 

of Faster R-CNN. In this method as compared to Faster 

R-CNN, a mask prediction branch is added in parallel 

with the existing classification and localization of 

candidate objects in the images.  

The detailed Mask R-CNN architecture is depicted in 

Figure 2. In the Mask R-CNN, convolutional backbone 

network including ResNet-101 and Feature Pyramid 

Network (FPN) extract feature maps from an image. Next, 

the feature maps are fed into Region Proposal Network 

(RPN) to propose the Regions of Interest (RoIs). Also, 

the Mask R-CNN is utilizing a quantization-free layer, 

called RoI Align for extracting predefined size feature 

maps from each RoI. 

In the head network, fully connected layers perform 

object classification and bounding box regression in each 

RoI in parallel with a branch for predicting masks (by 

classifying each pixel into a predefined object class) 

using a fully convolutional network (FCN). Equation (1) 

is the multi-task loss function on each RoI referring to the 

sum of classification loss (𝐿𝑐𝑙𝑠), the bounding-box loss 

(𝐿𝑏𝑜𝑥), and the mask loss (𝐿𝑚𝑎𝑠𝑘). Specifications of 

𝐿𝑐𝑙s and 𝐿𝑏𝑜𝑥 which have the same loss functions that 
are utilized in Faster R-CNN and demonstrate 

classification and detection error are described in [25] 

and details of 𝐿𝑚𝑎𝑠k are provided in [26], where 

𝐿 =  𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 +  𝐿𝑚𝑎𝑠𝑘 (1) 

3.2.1 Training the model  

Training the Mask R-CNN is based on the Matterport’s 

implementation [27] using the open-source libraries 

Keras and Tensorflow. Feature Pyramid Network (FPN) 

and ResNet101 are applied as a backbone network and 

rather than training the model from scratch, it is 

initialized by utilizing pre-trained weights on the MS 

COCO dataset. After testing different epochs for training 

the Mask R-CNN, the best results are achieved with 90 

Epochs and the batch size of 2, the weight decay of 

0.0001, and the learning rate of 0.001.  To minimize the 

overfitting problem and to improve the generalization of 

the model, different sets of image augmentation 

techniques such as the Horizontal Flip, the Vertical Flip, 

Rotation, the Gaussian Blur and Brightness are 

investigated to create modified copies of the existing data. 

Details of this investigation are provided in Table 1.  

Table 1 The parameters of the augmentation techniques 

Data 

Augmentation 

Technique 

Parameters 

Flip Horizontal & Vertical 

Rotation One of Ɵ=90°, 

180°,270° 

Brightness 

(Multiply) 

(adding value) 

(0.8,1.5) 

Image 

smoothing 

(Gaussian blur) 

(σ value of Gaussian 

kernel) 

(0.0,5.0) 
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3.3 Testing and Evaluation 

The Mask R-CNN performance can be measured 

based on the test dataset. Precision and Recall  are the 

selected evaluation metrics. Precision is defined as the 

ratio of the true predicted samples to the total samples 

and recall is defined as the ratio of true predicted samples 

to the total predicted samples, where TP is True Positive, 

FP is False Positive, and FN is False Negative, that is 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

The mean Average Precision (AP) is another 

commonly utilized metric for evaluation of the CNN 

object detectors which is defined as the mean of AP over 

all classes. Based on the Pascal VOC2010–2012 

definition, for a pre-defined Intersection over Union 

value (IoU) as a threshold, AP represents as the area 

under the precision-recall curve, which is between 0 to 1 

and is calculated as follows [28, 29]. 

𝐴𝑃𝑎𝑙𝑙 =  ∑(𝑅𝑛+1 − 𝑅𝑁)𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1)

𝑛

 (4) 

where the interpolated precision (𝑃𝑖𝑛𝑡𝑒𝑟𝑝) at a recall level 

(𝑅𝑛+1) is equal to the maximum precision that is 

achieved for any recall level 𝑅̃ ≥ 𝑅𝑛+1, that is 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑅𝑛+1) = 𝑚𝑎𝑥
𝑅̃:𝑅̃≥𝑅𝑛+1

𝑃(𝑅̃) (5) 

4 Results  

In this section, the performance of the Mask R-CNN 

architecture is evaluated. The model is implemented in 

the Google Colaboratory (Pro) which is a cloud service 

based on Jupyter Notebooks with a Tesla P100-PCIE-

16GBGPU (accessible up to 24 hours), and the Python3 

runtime to overcome the limitations of computer 

hardware such as disk space for data storage or data 

processing speed. According to the provided information, 

the training of the model took 4-5 hours. 

To assess effects of augmentation techniques on 

HVAC duct detection, two experiments are conducted on 

the training image dataset. In the first experiment, the 

images are used for training the model with no 

augmentation technique used (Experiment #1). In the 

second experiment (Experiment #2), the augmentation 

techniques that are described in Table 1. are applied for 

the model regularization and generalization,  

The results of the experiment are summarized in 

Table 2. Moreover, the mAP score for entire images in 

the Experiment #1 and Experiment #2 is 88.69% and 

90.6%, respectively. Figure 3. illustrates the downward 

trend of the loss function during the training process in 

the Experiment #2. It also shows the success of the model 

in preventing overfitting since there is a desired 

convergence of the training and validation errors. The 

output images from the HVAC duct detection extracted 

from the Experiment #2 by using the Mask R-CNN are 

depicted in Figure 4. 

 

Table 2. HVAC duct detection results using two 

augmentation experiments. 

Training 

dataset  

TP FP FN Precision 

(%) 

Recall 

(%) 

Experiment#1 223 74 32 75.08 87.45 

Experiment#2 224 53 31 80.87 87.84 

5 Discussion 

Due to absence of an open image dataset from building 

elements in the construction job sites, this research has 

utilized synthetic images that are generated from 3D BIM 

models to train a deep learning model for HVAC ducts 

recognition. Since the dataset is not large, to increase the 

model performance during the training process, transfer 

learning based on the COCO dataset, and different data 

augmentation techniques are considered and applied.  

It has been shown in Table 2 that the performance of 

Experiment #2 with a precision value of 80.87% and a 

mAP score of 90.6% is better than the Experiment#1 with 

a precision value of 75.08% and mAP value of 88.69%  

Figure 2. Mask R-CNN network architecture 
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and it can be stated that the effect of data augmentation 

on the model is meaningful and helpful.  

According to the results obtained, the developed 

method provides a robust and accurate tool for 

recognition of installed HVAC ducts utilizing synthetic 

images. As such it addresses scarcity of available datasets 

of real images. It is suggested that performance of the 

developed method be evaluated using a larger training 

dataset that includes a mix of both the synthetic and real 

images and impact of various augmentation techniques 

be considered for further investigation. Moreover, the 

developed method can be extended to detect additional 

building elements such as piping, beams, among others 

to help progress reporting to be more efficient. 

 

 

Figure 3. Loss value at each epoch in training 

and validation sets. 

 

Figure 4. Results of the proposed method 

6 Conclusion 

This study has utilized a synthetic image dataset that 

is generated from 3D BIM models to overcome the 

requirement of having large real-image datasets for 

training deep learning algorithms. The dataset includes 

images from various viewpoints, lighting conditions and 

occlusions to evaluate the robustness of the model. Due 

to the special appearance of the HVAC ducts, a pixel-

wise segmentation approach was selected to increase the 

accuracy of the detected HVAC ducts spatial locations in 

images as compared to other algorithms such as the 

Faster R-CNN where detection is limited to bounding 

boxes. The Mask R-CNN was also implemented to 

accurately recognize the HVAC ducts in construction 

sites with the training time between 4-5 hours. The model 

results that use transfer learning and data augmentation 

techniques have a mAP of 90.6%, a precision of 80.87%, 

and a recall of 87.84%. According to the obtained results , 

the Mask R-CNN model can accurately detect HVAC 

ducts  with irregular shapes. The main contribution of this 

research is development of a solution and scheme that 

can automate HVAC ducts recognition, and its later use 

in automated progress reporting making use of  as-

planned and as-built stages via digital imaging taken 

from either 3D models or real construction jobsites. This 

will considerably reduce the manual effort and time in 

monitoring and reporting. To evaluate the performance 

of our proposed methodology in the construction phase 

with real HVAC ducts, it is planned to extend our work 

by utilizing real images. Also in future work, 

performance of other CNN architectures with more 

building classes will be fully explored.  
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